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Raman spectroscopy is an important technique for explosive detection. However, the output spectra are sometimes ambigu-
ous and not strong enough to be analysed. In this work, Surface-Enhanced Raman spectroscopy (SERS) for energetic materi-
als detection was achieved by using in situ impregnated silver nanoparticles in the membrane substrate. The substrates used 
in SERS were characterised by ultraviolet-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM) with energy 
dispersive spectroscopy (EDS) for elemental analysis. Three substrates were used, all of which were impregnated with silver-
nanoparticles. The first substrate (A) received no coating, while the other two substrates (B and C) were coated on one side 
only with a polymer epoxy layer with a thickness of 0.01 mm and 1 mm, respectively. The three different substrates were used 
for the detection of an energetic material, TNT, by Raman spectroscopy. The Raman spectrum of TNT using the impregnated 
substrate without any coating (A) showed an enhancement in the results compared to the epoxy-coated substrates (B and 
C). Hence, substrate A can be used for energetic materials detection.

Introduction
Nowadays, with terrorism attacks around 
the World, researchers are looking at 
ways to reduce both civilian and military 
casualties. Early detection of danger-
ous materials, especially explosives, is 
one of the main ways in which terror-
ism operations can be aborted.1 Fast, 
practical and accurate detection tech-
niques are in high demand to counter 
these attacks. Such techniques should 
produce results that have high sensi-
tivity together with ease and simplicity 
of use so that they can be deployed in 
the field. However, it has been found 
that accurate detection of explosives 
is challenging. Further, the presence of 
traces of explosive in water is a serious 

problem as it affects directly both living 
aquatic species and humans.2 Various 
analytical techniques have been used 
to help to identify the explosophorous 
groups. Chromatographic and spectro-
metric techniques are the basic meth-
odologies that have been used for 
what are risky tasks.3,4 However, rela-
tively expensive techniques such as 
mass spectrometry and Fourier trans-
form infrared (FT-IR) spectroscopy need 
special sample preparation and long 
processing steps to be able to complete 
the required analysis, which makes 
them unsuitable for use in the field. In 
addition, traces of explosive are barely 
detectable by conventional or even by 
advanced instruments of these types.

Raman spectroscopy has an advan-
tage over these instruments through 
on-site detection of sample traces with-
out special sampling treatment.5,6 In 
addition, Raman spectroscopy does not 
need samples to be in solution, which 
enables it to be utilised in diverse envi-
ronments. Raman spectroscopy records a 
unique spectrum that helps to accurately 

identify the investigated sample.7–10 The 
mechanism of the Raman spectros-
copy detection process is that the inci-
dent beam from the Raman laser source 
interacts with the molecules of the inves-
tigated sample causing different vibra-
tion modes. The reflected radiation from 
the sample molecules is detected and 
appears as a characteristic spectrum 
which is specific to the tested sample.11 
Raman spectroscopy is important in the 
explosive detection field.12 However, 
sometimes, the Raman spectrum of an 
explosive may be ambiguous due to the 
absence or weakness of some funda-
mental peaks used for sample recogni-
tion.

Researchers have at tempted to 
improve the Raman spectrum using a 
variety of techniques to enhance these 
weak peaks so that they can be easily 
analysed. It has been found that nano-
particles, especially metallic ones such as 
silver (Ag) and gold (Au), show a plas-
mon resonance when subjected to a 
Raman laser source: the incident beam 
strikes the metal nanoparticles causing 
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excitation of these particles. When these 
excited nanoparticles return back to 
their relaxation mode, the emitted radi-
ation frequency can build a magnetic 
field within the spot of the incident 
beam.13,14 The sample to be tested is 
placed on these nanoparticles and the 
reflected beam from the sample mole-
cules is magnified due to the adjacent 
magnetic field created from the interac-
tion between the incident light beam 
and the nanoparticles.15

2,4,6-Trinitrotoluene (TNT) is a very 
common explosive which has been 
involved in the production of land and 
sea mines, as well as terrorist bombs. 
TNT is easily absorbed by both skin and 
soil, and is classified as a carcinogenic 
material with high toxicity and long-term 
negative impacts. For these reasons, 
several researchers have been attracted 
to investigate the detection of traces of 
TNT. These attempts were based on the 
preparation of various substrates impreg-
nated with metallic nanoparticles using 
the chemical vapour deposition16 or spin 
coating techniques.17 However, all these 
investigations were based on two-step 
methodologies involving the preparation 
of a suspended solution of the explosive 
traces prior to use of the detection tech-
niques.18–20

In this study, a simple, more practical 
and straightforward one-step method 
was successfully utilised. The explo-
sive detection technique is based upon 
the simple preparation of a substrate 
(commercial filter paper) impregnated 
with Ag-nanoparticles produced through 
a one-step in situ reduction of silver 
nitrate using ascorbic acid as a suitable 
reducing agent. Further treatment after 
washing and drying to remove unre-
acted reagents and impurities took place 
by applying a layer of elastomeric poly-
mer to the substrate surface to improve 
the capture of sample traces on the 
substrate.

Material and methods
Materials
l-Ascorbic acid from BDH Chemical, 
Poole, UK, and silver nitrate crystals 
[general purpose reagent (GPR) A’ 
grade] from Hopkin & Williams were 
used. Whatman Number 1 filter paper 

and diglycidyl ether of bis Phenol A 
(DGEBA) of EEW 500 epoxy and poly-
amide as a hardener were purchased 
from ISPAC. The energetic material, TNT, 
was prepared in our local laboratory.

Substrate preparation
3 g of silver nitrate was dissolved in 
100 mL distilled water under suitable 
agitation. The substrate was immersed 
in this solution for 12 h to guarantee the 
complete saturation of the filter paper. 
The ascorbic acid solution, as a reduc-
ing agent, was prepared by dissolving 1 g 
of ascorbic acid in 50 mL distilled water 
(Figure 1). The prepared reducing agent 
solution was applied to the saturated 
filter paper with silver nitrate solution by 
spraying to ensure in situ reduction of the 
silver nitrate and the production of silver 
particles. Then, the treated substrate was 
put in an oven at 60° C for 6 h to evapo-
rate the water solvent. After drying the 
substrate, the sample was washed with 
distilled water and dried again.

This cycle of washing and drying the 
sample was repeated three times to 
ensure removal of reactant residuals and 
unattached products. The elastomeric 
polymer was prepared by mixing the 
epoxy DGEBA with polyamide in the ratio 
of 1 : 0.45 and adding a suitable solvent, 
such as xylene, to the mixture in the ratio 
of 0.1 : 1. Three substrates were used for 
SERS; all of them were impregnated with 

Ag-nanoparticles. Two of them were then 
coated: substrate B was coated with a 
0.01 mm epoxy layer and substrate C was 
coated with a 1 mm epoxy layer, while 
the third substrate, A, was left uncoated.

UV-vis spectroscopy
UV-vis spectroscopy over the range 
of 200–800 nm was conduc ted 
for the prepared Ag-nanoparticles 
(Figure 2). The previous procedure 
for Ag-nanoparticle preparation on a 
substrate was followed except that we 
did not use a substrate and the reduc-
tion reaction took place in a glass test 
tube. The resulting suspended silver 
nanoparticles were diluted for analysis 
using a UV-vis spectrometer (Shimadzu 
UV-1700).

Scanning electron microscopy 
with energy dispersive X-ray 
spectroscopy
The prepared samples were subjected 
to scanning electron microscopy (SEM) 
(Zeiss EVO 10 equipped with a Bruker 
EDS) to investigate the silver parti-
cles’ size, size distribution among the 
substrate, and the surface morphology 
of the applied epoxy and its homoge-
neity distribution along the substrate 
surface. Cross-sectional SEM images 
were collected to study the silver parti-
cles’ distribution by substrate depth. 
Energ y d ispers ive spec t roscopy 

 

 

 

 

 

 

 

   

 

 

 

Figure 1. UV-VIS spectrum of Ag nanoparticles sample. 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2. UV-VIS spectrum of Ag nanoparticles sample. 
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Figure 1. Preparation of SERS substrates.
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(EDS) for elemental analysis was 
conducted to confirm the nature of the 
Ag-nanoparticles on the substrate.

SERS for explosive detection
Raman spectroscopic measurements 
were carried out on a solid sample of 
TNT using a dispersive Raman micro-
scope (Senterra II, Bruker, Germany). 
Raman spectra were collected continu-
ously with spectral resolution of 4 cm–1. 
A Nikon 20× objective was used to 
focus the Raman excitation sources 
(2.5 mW at 532 nm and 100 mW at 
785 nm, neodymium-doped yttrium 
aluminium garnet (Nd:YAG) laser, Bruker, 
Germany). Spatial resolution was in the 
order of 1 µm for the 20× objective lens 
and 361 nm for the 100× objective lens. 
Several points on the substrates were 
used in the SERS measurement method-
ology as shown in Figures 3 and 4. Data 
collection time was 1000 ms (co-addi-
tion of three spectra), the illumina-
tion area was 50 × 50 µm, fluorescence 
baseline correction was performed using 
a third-order polynomial, followed by 
the application of a three-point moving 
average filter to eliminate most of the 
perturbing baseline and improve the 
signal-to-noise ratio.

First, the explosive sample was placed 
as solid powder in a quartz cuvette 
and subjected to Raman spectroscopy 
to collect the Raman spectrum of the 
explosive sample as a reference. Then 
we measured the prepared membrane 
substrate by Raman spectroscopy with-
out any explosive samples to produce 
a Raman zero background (so we 
could subtract the Raman spectrum of 

the substrate from the analysis of the 
real samples). 0.01 mg of the explo-
sive powder was put on the membrane 
substrate and then subjected to Raman 
spectroscopy for detection.

Results and discussion
UV-vis spectroscopy
UV-v is spec t ra of the prepared 
Ag-nanoparticles in the spectral range 
200–800 nm showed a peak at 484 nm. 
The peak is broad and according to Mie’s 
observations, could be attributed to the 
irregular shape and polydispersity of the 
sample.21

SERS for explosive detection
TNT on substrate A showed no results 
when using the laser source at 532 nm 
with different powers. Figure 5 shows the 
Raman spectrum of TNT explosive alone 
and the enhanced Raman spectrum of 
TNT + substrate A using a laser source of 
785 nm and a power of 100 mW. Several 
experiments were conducted to reach 
this power as the minimum required to 

Figure 2. UV-vis spectrum of Ag-nanoparticles sample.

Figure 3. Several selected points for Raman analysis of pure Ag-nanoparticles on substrate.

Figure 4. Several selected points for Raman analysis of Raman spectrum of TNT + 
Ag-nanoparticles on substrate at 785 nm.
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get a good spectrum for TNT. Different 
peaks were seen in the range between 
1700 cm–1 and 100 cm–1. Peaks at 
1616 cm–1 and 1532 cm–1 are attributed 
to strong vibration of the C=C p bond 
in an aromatic ring chain—the benzene 
ring in the case of TNT22—or are attrib-
uted to an asymmetric vibration of the 
2,6-NO2 bond and an asymmetric vibra-
tion of the –NO2 bond in the benzene 
ring.23 The peak at 1358 cm–1 is due to 
to a strong symmetric vibration of the C–
NO2 bond as the nitrate groups attached 
to the benzene ring in the TNT struc-
ture.24 Peaks at 823 cm–1 and 792 cm–1 
are due to the scissoring vibration mode 
of the C–NO2 bond and the stretching 
vibration mode for C–CH3. For the SERS 
of TNT using substrate A, it was noticed 
that new, interesting peaks appeared for 
the first time in the Raman spectrum; 
such as the peak at 2956 cm–1, which is 
related to the strong vibration of the C–H 
bond, and the peak at 3098 cm–1, due to 
the strong vibration of the =C–H bond in 
an aromatic structure such as a benzene 
ring. Moreover, the intensity of the peaks, 
from comparing the half-height width of 
the peaks, increased by approximately 
seven times. This enhancement effect 
could be attributed to the plasmon reso-
nance of the distributed Ag-nanoparticles 
on the substrate.

Figure 6 shows the Raman spec-
trum of TNT using the laser source at 
532 nm with power of 2.5 mW. The 
same peak positions appeared as in 
the TNT Raman spectrum using the 
785 nm laser source. In addition, a new 
peak at 2956 cm–1 appeared which 
is attributed to the strong vibration of 
the C–H bond in the TNT structure. A 
further peak at 3098 cm–1 is due to 
the strong vibration of the =C–H bond. 
An observation to note is that when 
comparing the Raman spectra of TNT 
using 532 nm and 785 nm lasers and 
the enhanced Raman spectrum of TNT 
using substrate A as shown in Figure 7, 
the methods all share the same peak 
positions except those at 2956.50 cm–1 
and at 3098 cm–1 with the 532 nm laser 
which do not appear with the 785 nm 
laser. This means that these peaks are 
characteristic of TNT and only appear 
using a high-energy laser source such 

Figure 5. Raman spectrum for TNT sample alone and TNT sample on the prepared substrate A 
using a laser source at 785 nm and power of 100 mW.

Figure 6. Raman spectrum for TNT sample alone and Raman spectrum for TNT sample on the 
prepared substrate B using a laser source at 532 nm and power of 2.5 mW.

Figure 7. Raman spectrum for TNT sample alone using a laser source of 532 nm and power of 
2.5 mW and TNT sample alone using laser source 785 nm and power 100 mW.
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as 532 nm. This is a good verification 
that substrate A significantly enhances 
the peak at 2956 cm–1 when we use 
a Raman spectrometer with a low-
energy laser source at 785 nm. The 
same procedure was conducted for 
TNT on the coated substrates B and C. 
Substrate C, with a thick film of elasto-
mer, was excluded as it gives a poor 
signal-to-noise ratio. On the other hand, 
no results were seen when using the 
785 nm laser with different powers for 
TNT on substrate B. However, substrate 
B—TNT coated with a thin film of 

elastomer—gave clear results when the 
532 nm laser source with 2.5 mW power 
was used. The decrease in the intensity 
of the scattered light is due to the pres-
ence of this thin elastomer film which 
absorbs some of the scattered light 
which consequentially affects its inten-
sity.

SEM-EDS
Figure 8 shows that substrate A is doped 
with well-distributed Ag-nanoparticles 
of different nano sizes. At high magni-
fication (39 k×), it is observed that the 

Ag-nanoparticles are in the size range 
130–250 nm and are distributed evenly 
through the substrate.

From the EDS analysis, as shown in 
the elemental analysis graph in Figure 9 
and the element distribution pattern in 
Figure 10, it can be seen that the sample 
had 17.03 % mass of C, 6.48 % mass of 
O, 0.22 % mass of Si, 1.15 % mass of S 
and 38.71 % mass of Ag. This indicates 
that the Ag-nanoparticles are present in 
greater mass in substrate A, which we 
propose is suitable as a substrate for 
Raman enhancement proposes.

Conclusions
In this study, a simple, more practical 
and straightforward one-step method 
was successfully utilised for the detec-
tion of TNT explosive traces in their 
naturally solid form. Herein, in situ depo-
sition of Ag solid nanoparticles upon a 
commercial filter paper, as the substrate, 
occurred directly instead of the prepara-
tion of a suspended solution as in most 
of the previous works in the literature. 
Interestingly, new characteristic peaks 
for TNT appeared either at high-energy 
(583 nm) or at low-energy laser source 
(785 nm). This could be considered as 
an improvement in the detection tech-
nique of solid particles of TNT using a 
simple one-step method. Adding a poly-
meric layer on the substrate by coat-
ing it with the elastomer DGEBA made 
the substrate more flexible and sticky 
for sample capture purposes. However, 
applying the polymer to the impreg-
nated substrate destroys its capabil-
ity for Raman enhancement. Substrate 
A shows a good Raman enhancement 
of the tested sample TNT. Substrate C 
showed unexpected failure in Raman 
spectrum enhancement due to the thick 
layer of the polymer coat. Substrate B 
with the applied thin layer of the elasto-
mer is sticky enough to hold the traces of 
the tested sample. However, it showed 
no difference in Raman enhancement 
for the tested explosive sample of TNT, 
so it is not suitable for explosive detec-
tion. Substrate A is suitable for explosive 
detection using the Raman enhance-
ment technique, and in the future work 
on different explosives will be carried out 
with this substrate.

Figure 8. SEM spectroscopy of substrate A (Ag-nanoparticles on filter paper substrate).

Figure 9. EDS elemental analysis for substrate A.
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