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Introduction
I have been thinking that it is about 
time (or it will be soon) that I should 
retire from producing my share of the 
Tony Davies column. “Going the last 
mile” is a familiar term and a furlong (a 
very old English measure of distance) 
is 1/8th of a mile. I am not sure how 
many furlongs there will be, but they 
will be a review of the chemometric 
ideas that have most excited me over 
the last 30 years. The furlong is the 
classic measure of distance in horse 
racing so irrespective of the distance; 
the race ends with the “last furlong”. 
There will be a last furlong for these 
columns. Please note that the furlong 
is a fundamental unit in the FFF 
(furlong/firkin/fortnight) system!1

Chemometrics of data 
compression
One of the most important ideas in 
chemometrics is data compression. This 
is the reduction in the number of vari-
ables without the loss of information. 
Compression may be applied to a data 
set (spectra of different samples) or to 
an individual sample (a spectrum).

Spectroscopy usually provides spectra 
of samples with data for a large number 
of variables (wavenumbers or wave 
lengths). When I started in NIR spec-
troscopy we had spectra with 700 data 
points. The first chemometric method 
we used was multiple regression analy-
sis and there were far too many vari-
ables. My friend Ian Cowe began to use 
principal component analysis (PCA) to 
reduce the number of variables, but I 
could not copy him because the only 
PCA program available to me was 
limited to a maximum of 100 varia-
bles. In 1982 I went to the first IDRC 

at Chambersburg where I met Professor 
Fred McClure. Fred introduced me 
and the meeting to the use of Fourier 
Transformation (FT) for compressing 
spectral data.2 The idea did not seem 
to impress many delegates, but I was 
very excited by it because I immediately 
realised that this was the way to fit my 
spectra into PCA. It was my entry point 
to chemometrics and a long collabora-
tion with Fred McClure.

Data compression by 
Fourier Transformation
Fourier transformation (FT) involves the 
addition of series of sine and cosine 
waves, and the mathematics of what 
we now call “Fourier Transformation” 
were invented by the French physicist 
Joseph Fourier to help him in his work 
on the propagation of heat in 1807.2 FT 
is complex and requires extensive calcu-
lations. Early computers were too small 
and much too slow to be used for FT! 
The speed problem was much reduced 
with the invention and publication of 
the Fast Fourier Transformation (FFT) by 
Cooley and Tukey3 in 1965.

Summing sine waves
In order to keep things as simple as 
possible we are just going to sum sine 
waves but I am sure you can imagine 
that with the extra addition of cosines the 
effects are similar but more complex.

The top half of Figure 1 shows two sine 
waves, one of one cycle and the other of 
three cycles. It is not difficult to imagine 
that the addition of these two waves will 
produce the slightly more complex wave 
in the lower part of Figure 1. The top half 
of Figure 2 shows a series of sine waves 
with odd numbers of cycles from 1 to 15. 
What would be the sum of these eight 

waves? The answer is shown in the lower 
part of the Figure. It is not difficult to see 
that if we extended the number of sine 
waves then the sum would approach 
the shape of a square wave as shown 
in Figure 3.

If we can go from a sine wave to a 
square wave just by adding sine waves 
is there any limit to what shape we can 
fit? In 1807 Joseph Fourier proposed 
that any curve could be fitted by the 
summation of a series of sine and 
cosine waves. Now that we have the 
added benefit of the FFT these can 
be readily computed on even a low 
specification PC. The output from the 
program is a series of “a” and “b” coef-
ficients for the series of sine and cosine 
waves.
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Sum of 2 sine waves y=1/n*sin(nx) for n=1, 3

Figure 1. Upper: two sine wave. Lower: the 
sum of the two sine waves.
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Applying FT to NIR 
spectra
Figure 4 is an NIR spectrum of a PET 
plastic recorded at 2 nm intervals over the 
range 1100–2498 nm, so we have 700 
wavelength values. The spectrum is typi-
cal of many NIR spectra in that there is an 
upward trend. This would cause a prob-
lem with the FT because the mathemat-
ics assumes that the waveform repeats 
to infinity in both directions; if the ends 
are not equal then the discontinuity will 
give rise to a series of high frequency 
oscillations known as “ringing” at each 
end of the spectrum. This irritation can 
be readily removed by calculating a tilt 
and removing this from each point in the 
spectrum. The lower spectrum in Figure 
4 is the result of this procedure.

If we have 700 wavelengths, we will 
compute 350 pairs of Fourier coefficients 
and these are shown for the (tilted) 

spectrum of the PET spectrum as 350 
“a” coefficients followed by 350 “b” coef-
ficients in Figure 5.

An important point, which may be 
obvious but I need to stress it, is that this 
process is exactly reversible. Figures 4 
and 5 are two views of the same infor-
mation, if we have one we can calculate 
the other but, of course, we have not yet 
achieved any data compression.

FT data compression
A few of the coefficients shown in Figure 
5 are larger than the majority, while 
many of the majority are close to zero 
and this makes it possible to reduce (i.e. 
compress) the data by not saving these 
very small coefficients. It is often found 
that, as in Figure 5, most of the useful 
information in the frequency domain is 
found at low to moderate frequencies 
and the high frequencies can be ignored. 

The higher frequencies are just forgot-
ten during data storage, transmission 
or processing and are replaced by zeros 
when reconstructing the original spec-
trum. The difference between the origi-
nal and a well-reconstructed spectrum is 
often seen to be noise and thus the FT 
process can achieve data compression 
and high frequency noise reduction in 
the single operation.

The effects of saving only 20 pairs or 
100 pairs of coefficients on the recon-
struction of the spectrum are shown in 
Figures 6 and 7, respectively. The green 
line at the bottom of the figure is the 
difference between the original (black) 
spectrum and the (red) reconstruction. 
With only 20 pairs of Fourier coefficients 
the error is obvious, but with 100 coef-
ficients it is almost a straight horizontal 
line. The line is plotted on its own scale 
in Figure 8 and it can be seen that this is 
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Sum of 8 sine waves y=1/n*sin(nx) for n=1,3,5,...15

Figure 2. Upper: eight sine waves of increasing frequency. Lower: sum 
of the eight sine waves.
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Series of 8 sine waves y=1/n*sin(nx) for n=1,3,5,...15
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Sum of 100 sine waves y=1/n*sin(nx) for n=1,3,5,...199

Figure 3. Upper: 100 sine waves of increasing frequency. Lower: sum 
of the 100 sine waves.
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characteristic of high frequency noise and 
can be advantageously removed.

Thus we can see that for this spec-
trum we can reduce the size of the spec-
trum file by 70% while at the same time 

removing some high frequency noise but 
not losing information.

Some further 
mathematics?
If you are interested in understanding 
the mathematics more completely, Tom 
Fearn and I have previously published 
two columns4,5 in our mini-series on 
matrix algebra using FT as an example. 
You can find them on the Spectroscopy 
Europe website.

In the next “furlong” we will discuss a 
more recent method of data compres-
sion, wavelets.
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Figure 6. The original (black), reconstructed (red), tilted (blue) and 
difference (green) spectra using 20 pairs of Fourier coefficients for the 
reconstruction of the spectrum in Figure 5.

Figure 7. As Figure 6, but using 100 pairs of Fourier coefficients. 
The original spectrum is hidden by the reconstructed version. The 
almost straight, horizontal green line is the difference spectrum. This is 
expanded in Figure 8.
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Figure 5. The Fourier coefficients for the spectrum of PET. “a” coef-
ficients 1–350; “b” coefficients 351–700.

Figure 4. The original (black) and tilted (blue) NIR spectrum of a 
sample of PET.

Figure 8. The difference spectrum from 
Figure 7 plotted on an expanded scale.
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